(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, y) → cond(min(x, y), x, y)
cond(y, x, y) → s(minus(x, s(y)))
min(0, v) → 0
min(u, 0) → 0
min(s(u), s(v)) → s(min(u, v))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
min(s(u), s(v)) →+ s(min(u, v))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [u / s(u), v / s(v)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, y) → cond(min(x, y), x, y)
cond(y, x, y) → s(minus(x, s(y)))
min(0', v) → 0'
min(u, 0') → 0'
min(s(u), s(v)) → s(min(u, v))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(x, y) → cond(min(x, y), x, y)
cond(y, x, y) → s(minus(x, s(y)))
min(0', v) → 0'
min(u, 0') → 0'
min(s(u), s(v)) → s(min(u, v))
Types:
minus :: s:0' → s:0' → s:0'
cond :: s:0' → s:0' → s:0' → s:0'
min :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
minThey will be analysed ascendingly in the following order:
min < minus
(8) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
min(
x,
y),
x,
y)
cond(
y,
x,
y) →
s(
minus(
x,
s(
y)))
min(
0',
v) →
0'min(
u,
0') →
0'min(
s(
u),
s(
v)) →
s(
min(
u,
v))
Types:
minus :: s:0' → s:0' → s:0'
cond :: s:0' → s:0' → s:0' → s:0'
min :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
min, minus
They will be analysed ascendingly in the following order:
min < minus
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_s:0'2_0(
n4_0),
gen_s:0'2_0(
n4_0)) →
gen_s:0'2_0(
n4_0), rt ∈ Ω(1 + n4
0)
Induction Base:
min(gen_s:0'2_0(0), gen_s:0'2_0(0)) →RΩ(1)
0'
Induction Step:
min(gen_s:0'2_0(+(n4_0, 1)), gen_s:0'2_0(+(n4_0, 1))) →RΩ(1)
s(min(gen_s:0'2_0(n4_0), gen_s:0'2_0(n4_0))) →IH
s(gen_s:0'2_0(c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
min(
x,
y),
x,
y)
cond(
y,
x,
y) →
s(
minus(
x,
s(
y)))
min(
0',
v) →
0'min(
u,
0') →
0'min(
s(
u),
s(
v)) →
s(
min(
u,
v))
Types:
minus :: s:0' → s:0' → s:0'
cond :: s:0' → s:0' → s:0' → s:0'
min :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
min(gen_s:0'2_0(n4_0), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
minus
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(13) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
min(
x,
y),
x,
y)
cond(
y,
x,
y) →
s(
minus(
x,
s(
y)))
min(
0',
v) →
0'min(
u,
0') →
0'min(
s(
u),
s(
v)) →
s(
min(
u,
v))
Types:
minus :: s:0' → s:0' → s:0'
cond :: s:0' → s:0' → s:0' → s:0'
min :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
min(gen_s:0'2_0(n4_0), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_s:0'2_0(n4_0), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(n4_0), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
min(
x,
y),
x,
y)
cond(
y,
x,
y) →
s(
minus(
x,
s(
y)))
min(
0',
v) →
0'min(
u,
0') →
0'min(
s(
u),
s(
v)) →
s(
min(
u,
v))
Types:
minus :: s:0' → s:0' → s:0'
cond :: s:0' → s:0' → s:0' → s:0'
min :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
min(gen_s:0'2_0(n4_0), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_s:0'2_0(n4_0), gen_s:0'2_0(n4_0)) → gen_s:0'2_0(n4_0), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)